

ACE Personal Trainer Manual, 4th edition

Chapter 11:

Cardiorespiratory Training: Programming and Progressions

Learning Objectives

- This session, which is based on Chapter 11 of the ACE Personal Trainer Manual, 4th edition, features a discussion of the physiological adaptations to acute and chronic cardiorespiratory exercise. It also includes coverage of the cardiorespiratory-training phases of the ACE IFT™ Model.
- After completing this session, you will have a better understanding of:
 - How cardiorespiratory exercise affects the following systems: muscular, cardiovascular, and respiratory
 - The components of a well-designed cardiorespiratory-training session
 - General guidelines for cardiorespiratory exercise
 - Various modes of cardiorespiratory exercise
 - The ACE IFT Model cardiorespiratory training phases and their appropriate application with clients
 - Special considerations for youth and older adults

Introduction

- Physical movement is essential for human survival.
- The obligatory need for physical activity is very low in modern society.
- The need for people to structure their lives to include higher levels of physical activity has risen dramatically.

Physiological Adaptations to Cardiorespiratory Exercise

- Muscular system
 - Type I muscle fibers (low- to moderate-intensity exercise)
 - Mitochondria
 - Capillaries
 - Type II muscle fibers (high-intensity exercise)

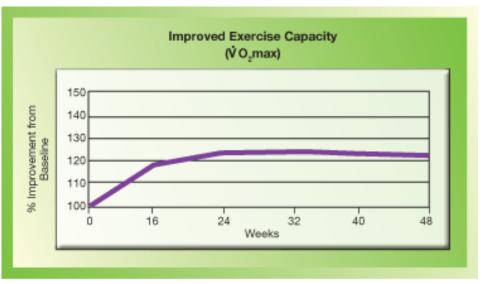
Physiological Adaptations to Cardiorespiratory Exercise (cont.)

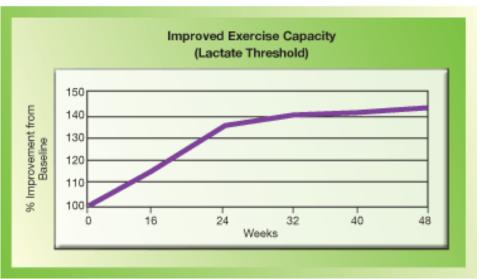
Cardiovascular system

- With endurance training, the heart muscle will hypertrophy, enlarging its chambers and becoming a bigger and stronger muscle.
- Increased cardiac output
 - Primarily due to a larger stroke volume
 - A redistribution of the cardiac output to the active muscles (via vasodilation) may also improve after training.

Physiological Adaptations to Cardiorespiratory Exercise (cont.)

Respiratory system


- Alveoli
 - The structure in the respiratory system that interfaces with the cardiovascular system.
- More efficient muscles of respiration
 - Diaphragm
 - Intercostals
 - Muscles that pull the ribcage upward during active inspiration
 - Muscles that pull the ribcage downward during active expiration
- Increased tidal volume


Time Required for Increases in Aerobic Capacity

- Cardiovascular adaptations are usually measureable after a couple of weeks of training.
- VO₂max
 - Increases with training, but reaches a peak and plateaus within about six months
- Ventilatory threshold (VT)
 - A significant marker of metabolism that permits prediction of lactate threshold (LT) during progressive exercise
 - May continue to increase for years with continued training, as illustrated on the following slide

Schematic of Changes in VO₂max and Metabolic Markers

Steady-state and Interval-based Exercise

Steady state

- Consistent intensity of exercise where the energy and physiological demands are met by the delivery from the physiological systems
- Limited by the willingness to continue or the availability of oxygen, muscle glycogen, and/or blood glucose

Interval training

- Higher-intensity exercise followed by recovery periods
- Provides anaerobic adaptations that improve tolerance for the buildup of lactic acid (lactate threshold)
- Provokes an increase in stroke volume that is not achievable with lower-intensity steady-state training

Components of a Cardiorespiratory Workout Session

Warm-up

- A period of lighter exercise preceding the conditioning phase of the exercise bout
- Should last for five to 10 minutes for most healthy adults
- Should not be so demanding that it creates fatigue that would reduce performance.
- Stretching
 - The practice of stretching before performing any warm-up is not justified and may potentially be harmful.
- May be subdivided into a general cardiovascular warm-up followed by a more exercise- or event-specific dynamic warm-up.

Components of a Cardiorespiratory Workout Session (cont.)

Conditioning phase

- The higher-intensity elements of a session should take place fairly early in the conditioning phase of the workout.
- Cardiovascular drift during steady-state training
 - A gradual increase in heart-rate response during a steady-state bout of exercise
- Aerobic-interval training exercise-to-recovery ratios between 1:2 and 1:1
- "Lactate sinks"
 - Aerobically trained type II muscle fibers that are proficient at using lactate for energy during hard steady-state exercise

Components of a Cardiorespiratory Workout Session (cont.)

Cool-down

- Should be of approximately the same duration and intensity as the warm-up
- Five to 10 minutes of low- to moderate-intensity activity
- "Muscle pump"
- An active cool-down can help remove metabolic waste from the muscles so that it can be metabolized by other tissues.
- A stretching routine following the cool-down period is appropriate.

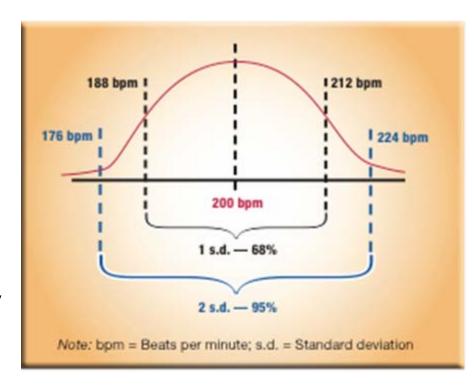
Cardiorespiratory Exercise for Health, Fitness, and Weight Loss

- Most health benefits occur with at least 150 minutes a week of moderate-intensity physical activity.
- ACSM and AHA F.I.T.T. guidelines are widely accepted.
- Additionally, clients should always enjoy the exercise experience.
- Changes in fitness are more sensitive to modifications in intensity than to modifications in the frequency or duration of training.

Cardiorespiratory Recommendations for Healthy Adults		
Exercise Type	Weekly Frequency	
Moderate-intensity aerobic exercise • 40% to <60% VO ₂ R or HRR	Minimum of 5 days per week	
Vigorous-intensity aerobic exercise • ≥60% VO ₂ R or HRR	Minimum of 3 days per week	
Combination of moderate- and vigorous-intensity aerobic exercise	3–5 days per week	

Note: $\stackrel{\bullet}{V}_{0}R = \stackrel{\bullet}{V}_{0}$ reserve; HRR = Heart-rate reserve

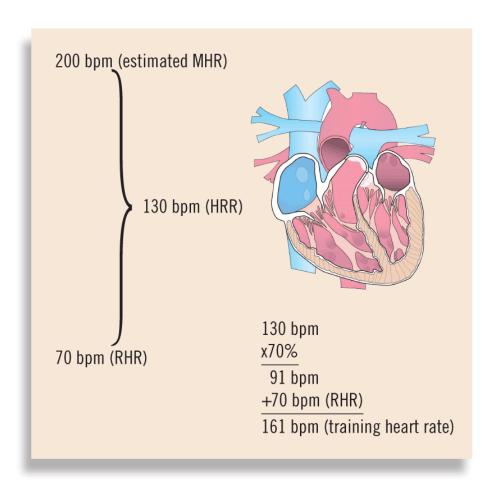
Source: American College of Sports Medicine (2010). ACSM's Guidelines for Exercise Testing and Prescription (8th ed.). Wolters Kluwer/Lippincott Williams & Wilkins.


Monitoring Intensity Using Heart Rate

- Numerous variables impact MHR:
 - Genetics
 - Exercise modality
 - Medications
 - Body size
 - MHR is generally higher in smaller individuals who have smaller hearts, and hence lower stroke volumes.
 - Altitude
 - Altitude can lower the MHR reached.
 - Age
 - MHR does not show a consistent 1-bpm drop with each year in all individuals.

Estimated Heart Rate Formulas

- Estimated MHR formulas (three formulas):
 - MHR = 220 age
 - Standardized predicted MHR formula used in fitness for decades
 - Standard deviation (s.d.): +/- 12 bpm (+/- 36 bpm at 3 s.d.)
 - $MHR = 208 (0.7 \times Age)$
 - s.d. close to +/- 7 bpm (+/- 21 bpm at 3 s.d.)
 - $MHR = 206.9 (0.67 \times Age)$
 - s.d. close to +/- 7 bpm (+/- 21 bpm at 3 s.d.)
- Accurate programming with MHR requires actual MHR
 - Impractical for the vast majority of clients and trainers


AMERICAN COUNCIL ON EXERCISE

Monitoring Intensity Using Heart Rate Reserve (HRR)

- Heart-rate reserve (HRR) equals the difference between MHR and RHR
 - HRR = MHR RHR
 - Target HR (THR) = the desired
 HR during exercise
 - The Karvonen formula can be used to calculate THR as a percentage of HRR:

THR = (HRR x % Intensity) + RHR

- Accurate programming with HRR requires actual MHR and RHR
 - Actual MHR is impractical for the majority of clients and trainers

ACSM Guidelines for Using %MHR

Recommended Framework for Exercise Intensity for Apparently Healthy Adults			
Activity/Exercise Level	Fitness Classification	%MHR	%HRR/VO ₂ max or VO ₂ R
Sedentary: No habitual activity or exercise, extremely deconditioned	Poor	57–67%	30–45%
Minimal activity: No exercise, moderately to highly deconditioned	Poor/fair	64–74%	40–55%
Sporadic physical activity: No or suboptimal exercise, moderately to mildly deconditioned	Fair/average	74–84%	55–70%
Habitual physical activity: Regular moderate-to- vigorous intensity	Average/good	80–91%	65–80%
High amounts of habitual activity: Regular vigorous-intensity exercise	Good/excellent	84–94%	70–85%

Note: MHR = Maximum heart rate; HRR = Heart-rate reserve; $\dot{\mathbf{V}} \mathbf{O}_2 \mathbf{max} = \dot{\mathbf{V}} \mathbf{O}_2 \mathbf{maximum}$; $\dot{\mathbf{V}} \mathbf{O}_2 \mathbf{R} = \dot{\mathbf{V}} \mathbf{O}_2 \mathbf{maximum}$; $\dot{\mathbf{V}} \mathbf{O}_2 \mathbf{R} = \dot{\mathbf{V}} \mathbf{O}_2 \mathbf{maximum}$

Adapted, with permission, from American College of Sports Medicine (2010). ACSM's Guidelines for Exercise Testing and Prescription (8th ed.). Philadephia: Wolters Kluwer/Lippincott Williams & Wilkins.

Monitoring Intensity Using Ratings of Perceived Exertion

- Two versions of the RPE scale:
 - Classical (6 to 20) scale
 - More contemporary category ratio
 (0 to 10) scale
- Both scales are capable of defining ranges of objective exercise intensity associated with effective exercise training programs.

Ratings of Perceived Exertion (RPE)			
RPE	Category Ratio Scale		
6 7 Very, very light 8 9 Very light 10 11 Fairly light 12 13 Somewhat hard 14 15 Hard 16 17 Very hard 18 19 Very, very hard 20	0 Nothing at all 0.5 Very, very weak 1 Very weak 2 Weak 3 Moderate 4 Somewhat strong 5 Strong 6 7 Very strong 8 9 10 Very, very strong * Maximal		

Adapted, with permission, from American College of Sports Medicine (2010). *ACSM's Guidelines for Exercise Testing and Prescription* (8th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.

Monitoring Intensity Using VO₂

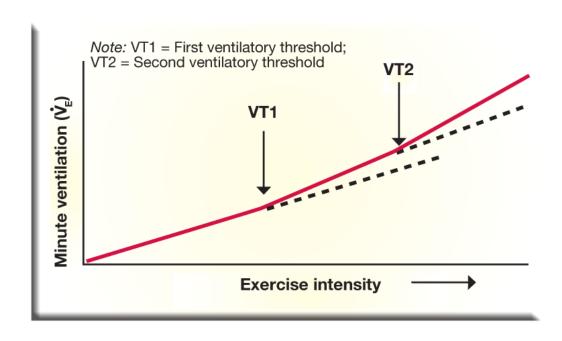
- Intensity can be monitored as a %VO₂max or %VO₂R
 - Training based on metabolic or ventilatory responses is much more meaningful than using arbitrary ranges of %VO₂max or %VO₂R, especially when these values are predicted.
 - Training intensities that are too far below the first ventilatory threshold (VT1) yield minimal cardiorespiratory fitness benefits.
- Submaximal assessments that predict VO₂max generally use predicted MHR
 - Errors in predicted MHR will affect predicted VO₂max

Monitoring Intensity Using METS

METs

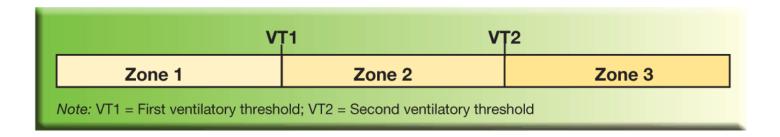
- Multiples of an assumed average metabolic rate at rest of 3.5 mL/kg/min
 - Resting metabolic rate is not exactly 3.5 mL/kg/min in every individual.
- The utility of using METs is so substantial that it more than makes up for any imprecision
 - Exercising at 5 METs equates to working 5x greater than when at rest
 - 5 MET x 3.5 mL/kg/min = 17.5 mL/kg/min

Monitoring Intensity Using Caloric Expenditure


- When the body burns fuel, O₂ is consumed, which yields calories to perform work.
 - 5 kcal per liter of O₂
- Absolute VO₂ (L/min)
- Relative VO₂ (mL/kg/min)
- Commercial cardiovascular exercise equipment
 - Provide estimates of caloric expenditure using absolute VO₂
 based on the amount of work being performed
 - Kcal per exercise session = L/min x 5 kcal/L x minutes
- Online caloric-expenditure calculators are available for a variety of physical activities on the ACE website.
 - www.acefitness.org/calculators

Monitoring Intensity Using the Talk Test

- Ventilation increases as exercise intensity increases
 - Linear increase, with the exception of two distinct deflection points: VT1 & VT2
- Initially, increased ventilation is accomplished through increased inspiration (tidal volume)
- At about the intensity of VT1, the increase in ventilation is accomplished by an increase in breathing frequency (respiration rate)
- Above VT1, but below the second ventilatory threshold (VT2), speaking is possible, but not comfortable.
- VT2 represents the point at which high-intensity exercise can no longer be sustained.
 - Onset of blood lactate accumulation (OBLA)
 - Above VT2, speech is not possible, other than single words.
- The talk test is an index of exercise intensity at VT1.


Monitoring Intensity Using Blood Lactate and VT2

- The metabolic response to exercise is generally non-linear.
 - It is more reasonable to program exercise in terms of metabolic response.
 - Easily marked by either blood lactate or VT1 and VT2
- Blood lactate threshold and VT1
 - Bicarbonate buffering system
- OBLA, HR turnpoint (HRTP), and VT2
 - HRTP is a flattening of the heart-rate response to increasing intensity.

Three-zone Training Model

- Zone 1
 - Relatively easy exercise
 - Reflects heart rates below VT1
 - Client can talk comfortably
- Zone 2
 - Reflects heart rates from VT1 to just below VT2
 - Client is not sure if he or she can talk comfortably

- Zone 3
 - Reflects heart rates at or above VT2
 - Client definitely cannot talk comfortably

Cardiorespiratory Exercise Duration

- Benefits gained from exercise and physical activity are dose-related.
 - Greater benefits are derived from greater quantities of activity.
 - Physical activity expending ≤1,000 kcal/week generally only produces improvements to health.
 - Expending ≥2,000 kcal/week promotes effective weight loss and significant improvements to overall fitness.
- Beginner exercisers
 - Typically cannot tolerate 30 minutes of moderate-intensity activity
 - Generally cannot start with the recommended frequency

Recommendations for Exercise Duration and Quantity			
Physical Fitness Classification	Weekly Expenditure (kcal)	Duration/Day (minutes)	Weekly Duration (minutes)
Poor	500-1,000	20-30	60-150
Poor-fair	1,000-1,500	30-60	150-200
Fair-average	1,500-2,000	30-90	200–300
Average-good	>2,000	30-90	200–300
>Good-excellent	>2,000	30-90	200–300

Source: Adapted from American College of Sports Medicine (2010). ACSM's Guidelines for Exercise Testing and Prescription (8th ed.). Wolters Kluwer/Lippincott Williams & Wilkins.

Cardiorespiratory Exercise Progression

- Progression follows basic training principles, including:
 - Overload
 - Specificity
- Exercise duration is the most appropriate variable to manipulate initially.
- Thereafter, implement progressions by increasing exercise frequency and then exercise intensity.
- Fartlek training

Types of Cardiorespiratory Exercise

- Physical activities that promote improvement or maintenance of cardiorespiratory fitness:
 - Equipment-based cardiovascular exercise

Physical Activities That Promote Improvement or Maintenance of Cardiorespiratory Fitness

- Group exercise
- Circuit training

Recreational sports

Outdoor exercise

- Seasonal exercise
- Water-based exercise

Soccer, basketball, racquet sports

- Mind-body exercise
- Lifestyle exercise

Exercise Description	Recommended Groups	Activity Examples
Endurance activities requiring minimal skill or fitness	All adults	Walking, slow-dancing, recreational cycling or swimming
Vigorous-intensity endurance activities requiring minimal skill	Adults participating in regular exercise or having better than average fitness	Jogging, rowing, elliptical training, stepping, indoor cycling, fast-dancing
Endurance activities requiring higher skill levels	Adults with acquired skill and higher fitness levels	Swimming, cross-country skiing

Adults participating in regular training with

acquired fitness and skill levels

Equipment-based Cardiovascular Exercise

- The aerobic value of any equipment-based program is based on how the machine is used.
 - Sustained moderate-intensity exercise is the foundation of cardiorespiratory exercise training.
- Many pieces can estimate the MET or caloric cost of exercise.
 - Common sense is required when using the MET or caloric values generated by exercise equipment.
 - In less-fit individuals, and if handrail support is used, the values may overestimate the actual value attained.

Group Exercise

- During the past few decades, an enormous variety of group exercise formats has emerged.
- Common to most formats is the use of music.
- The choreography and intensity can vary greatly.
 - Group indoor cycling programs can elicit VO₂ or HR values greater than those achieved during exercise tests.
 - Group exercise designed for older individuals can be very low intensity.

Circuit Training

- Cardiorespiratory training effects can be observed during circuit training by:
 - Alternating muscular strength and endurance activities with classical aerobic training
 - Performing the activities in a rapid sequence
- Depending on equipment availability, circuit training can be performed by:
 - A single individual rotating through select exercises
 - Groups of participants rotating in an organized manner through several exercise stations

Outdoor and Seasonal Exercise

- Outdoor exercise activities
 - Have emerged out of recreational activities, many with the promise of providing cardiorespiratory fitness
 - Some activities are much more variable in their cardiorespiratory training effects.
- Seasonal exercise activities
 - Likely to have a large cardiorespiratory training effect if the activities require sustained physical activity
 - Cross-country skiing and snowshoeing in the winter months and walking and running in the warmer months

Water-based Exercise

- Water aerobics classes and games can be effective methods of exercise.
- Water-based exercise is particularly valuable for older or obese individuals or those with orthopedic issues.
- Energy cost of ambulatory activity in the water

Immersion in water causes the blood to be redistributed

to the central circulation.

Mind-body and Lifestyle Exercise

Mind-body exercise

- Generally not associated with high-intensity aerobic activity
- May provide an intensity comparable to that of walking
- Examples include Pilates, hatha yoga, Nia, and tai chi

Lifestyle exercise

- Consistently performed domestic activities can provide enough stimulus to make previously sedentary people fit and contribute to excellent health.
- Activities like yard work should be viewed in the context of the total exercise load.

ACE IFT Model Cardiorespiratory Training Phases

The ACE IFT Model has four cardiorespiratory training phases:

- Clients are categorized into a given phase based on their current health, fitness level, and goals.
 - Clients may be in different phases for cardiorespiratory training and functional movement and resistance training.

Phase 1: Aerobic-base training

- The focus is on creating positive exercise experiences that help sedentary clients become regular exercisers.
- No fitness assessments are required prior to exercise.
- Focus on steady-state exercise in zone 1 (below VT1).
- Gauge intensity by the client's ability to talk comfortably and/or RPE of 3 to 4.
- Increase exercise duration (<10% increase per week)
- Progress to phase 2 once client can sustain steady-state cardiorespiratory exercise for 20 to 30 minutes in zone 1 (below talk test threshold; RPE of 3 to 4) and is comfortable with assessments.

AEROBIC-BASE TRAINING

Phase 2: Aerobic-efficiency Training

- The focus is on increasing the duration of exercise and introducing intervals to improve aerobic efficiency, fitness, and health.
- Administer the submaximal talk test to determine HR at VT1.
- Exercise programming in Zone 1 (< VT1) and Zone 2 (VT1 to < VT2)
- Progressions for Aerobic-efficiency Training:
 - Increase duration of exercise in zone 1
 - Then introduce low zone 2 intervals just above VT1 (RPE of 5)
 - Progress low zone 2 intervals by increasing the time of the work interval and later decreasing the recovery interval time.
 - As the client progresses, introduce intervals in the upper end of zone 2 (RPE of 6).
- Most clients will train in this phase for many years.
- If a client has event-specific goals or is a fitness enthusiast looking for increased challenges and fitness gains, progress to phase 3.

AEROBIC-EFFICIENCY
TRAINING

Phase 3: Anaerobic-endurance Training

- The focus is on designing programs to help clients who have endurance performance goals and/or are performing seven or more hours of cardiorespiratory exercise per week.
- Administer the VT2 threshold test to determine HR at VT2.
- The majority of cardiorespiratory training time is spent in zone 1, with intervals and higher-intensity sessions focused in zones 2 and 3.
- Cardiorespiratory training time is distributed as follows:
 - Zone 1 (< VT1): 70–80% of training time
 - Zone 2 (VT1 to < VT2): <10% of training time
 - Zone 3 (≥ VT2): 10–20% of training time
- Many clients will never train in phase 3.
- Only clients who have very specific goals for increasing speed for short bursts at near-maximal efforts will move on to phase 4.

ANAEROBIC-ENDURANCE TRAINING

Phase 4: Anaerobic-power Training

- The focus is on improving anaerobic power to improve phosphagen energy pathways and buffer blood lactate.
- Programs will have a similar distribution to phase 3 training times in terms of distribution among zones 1, 2, and 3.
- Zone 3 training will include very intense anaerobic-power intervals that are at or near maximal levels.
 - Zone 3 intervals in phase 4 will be of shorter duration than in phase 3, due to greater intensity (RPE = 9 or 10)
 - Increase length of recovery interval during zone 3 interval sessions
- Clients will generally only work in phase 4 during specific training cycles prior to competition.

ANAEROBIC-POWER
TRAINING

Recovery and Regeneration

- As a general principle, training should be periodized.
- The biggest programming mistakes include:
 - Taking too few recovery days
 - Trying to do something other than recover on recovery days
 - Trying to progress the training load on recovery days (when it should only be progressed on hard days).
- The bottom line is that recovery days are for recovery.
- Two or three hard training days per week are probably adequate to allow progress toward most goals.

Cardiorespiratory Training for Youth

- In youth, there are two primary considerations:
 - Prevent early overspecialization
 - Protect against orthopedic trauma from training too much
- Youth typically perform intermittent activity rather than the more sustained activity that is typical of fitness exercise.
- For obese youth, structured exercise may be appropriate.

- Intensity should be low enough that exercise is fairly comfortable (zone 1).
- Since energy expenditure is of primary importance, the duration of exercise should probably progress to an hour or more.

Cardiorespiratory Training for Older Adults

- In older individuals, there are four overriding considerations that dictate modification of the exercise program:
 - Avoiding cardiovascular risk
 - Avoiding orthopedic risk
 - The need to preserve muscle tissue
 - The rate at which older individuals respond to training
- Older adults are less tolerant of:
 - Heavy training loads
 - Rapid increases in training load
 - Single-mode exercise
 - Stop-and-go game-type activities
- Sarcopenia and low bone mineral density are also concerns for those over 50.

Summary

- Physical activity or structured exercise performed with regularity causes adaptation in the heart, lungs, blood, and muscle tissue and promotes the ability to perform even more exercise.
- This session covered:
 - Physiological adaptations to cardiorespiratory exercise
 - Components of a cardiorespiratory workout session
 - Cardiorespiratory exercise for health, fitness, and weight loss
 - Types of cardiorespiratory exercise
 - ACE IFT Model cardiorespiratory-training phases
 - Recovery and regeneration
 - Considerations for youth and older adults